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Abstract--The two-dimensional conservation equations arc solved numerically for natural convectIon in 
an inclined square box bounded by four rigid plates of constant temperature containing uniformly dis- 
trihuted internal energy sources. Two different numerical schemes arc applied. the first is an ADI technique 
where vorticity and strcamfunction are used, and the second is a hybrid method using primitive variables. 
Inclination angles from the horizontal of 0. IS, 30 and 45 deg and Rayleigh numbers from IO’ to I .5 x IO 
are studied, the Prandtl number is 7 throughout. For (I = 0 deg and Rn > 5 x IO” an oscillating solution iq 
achieved. The numerical results are compared in detail with an experimental study of Lee and Goldstein 

INTRODUCTION 

THE NATURAL convection in a confined enclosure has 
been examined extensively for the case when the flow 
was driven by a temperature gradient between the 
walls. Yang [I] and Ostrach [2] have presented surveys 
about experimental and numerical studies with a 
detailed list of references. 

Thermal convection in a fluid with internal energy 
sources is very important in the theory of thermal 
ignition where heat sources within the fluid are driven 

by an exothermal chemical reaction. Here the thermal 
gradients originated by the chemical reaction can be 
the driving force for the onset of natural convection 
which markedly enhance the rate of heat transfer in 
comparison to a purely conductive mechanism. 
Numerical work on this problem has been presented 
by Merzhanov and Shtessel [3] and Jones [4], who 
studied a homogeneous zero-order reaction, whereas 
a first-order exothermal chemical reaction is described 
by Kopylov and Makhviladze [S]. Gray and Kostin 

[6] considered an adiabatic square enclosure in which 

a catalytic reaction occurs at the two side walls. 
Emara and Kulacki [7] studied numerically the 

thermal convection in an enclosure which is driven 
by uniform heat sources. Their results are in good 
agreement with experimental data. Acharya and 
Goldstein [El] presented a numerical investigation of 
two-dimensional natural convection of air in an 
cxothermally heated inclined box containing uni- 
formly distributed internal heat sources. 

The purpose of this paper is the numerical study of 
the Row in a confined enclosure being driven by 
uniform heat sources within and the examination of 
the temperature field and heat transfer to the walls. 
Experiments which are described by Lee and 
Goldstein [9] are simulated using two different 

numerical schemes. The fluid used in these exper- 
iments was distilled water with NaCl added in order to 
raise the electrical conductivity. The thermophysical 

properties of the fluid were very close to those of pure 
water. A 60 Hz a.c. was passed from one silver-plated 
copper plate to the opposing one through the water 
to provide a relatively uniform internal heat source. 
The temperature distribution was measured using a 
Mach-Zehndcr interferometer. A schematic drawing 

of the apparatus is shown in Fig. I. 

GOVERNING EQUATIONS 

We start from the conservation equations of mass. 

momentum and energy for a Newtonian fluid the 
motion of which is laminar using the Boussinesq 
approximation. Three-dimensional effects arc neglcc- 
ted here. 

Using the dimensionless variables (see Fig. I) 

the continuity, momentum and cncrgy equation may 
be written as 
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NOMENCLATURE 

.r/ gravitational accclcration .\-. 1’ dimensionless coordinates. 
H energy source per unit time and volume 
I< thermal conductivity Greek symbols 
Nu local Nusselt number. equation ( IX) thermal diffusivity of fluid 
NlI avcragc Nussclt number. equation (19) ; thermal expansion coeficient of fluid 
NLI modifcd Nussclt number, equation (20) 0 inclined angle, Fig. I 
II direction normal to the wall 3 dimensionless temperature 

P dimensionless pressure I’ kinematic viscosity of fluid 
PI Prandtl number time 
Ra Raylcigh number. equation (6) ; strcamfunotion 
T temperature (‘1 vorticity 

T,, tcmperaturc at the wall 
t dimcnsionlcss time Subscripts 
c’, V velocity components in the X- and Y- B bottom wall 

directions L left wall 
u. I’ dimensionless velocity components R right wall 
X. )I Cartesian coordinates T top wall. 

if, ?/, r’l. Ra 

irt 
+cr +z, _ -AZ> = - 

ip 

iI< +8 P, 
3coso (4) 

(1‘ 
(10) 

(5) 
so that the continuity equation (2) is identically 
satisfied. The vorticity CO is defined by 

The dimensionless parameters characterizing the sys 

tcm are the inclination angle 0, the Rayleigh number 

’ HI’ 
8k 

(6) 

and the Prandtl number 

which was chosen to be constant here 

The boundary conditions are 

II = I‘ = 9 = 0 for .v = 0. I and J* = 0. I (8) 

and the initial conditions become 

II = I’ = 9 = 0 at I = 0. (9) 

Now we introduce the streamfunction $ satisfying 

FIG. I. Schematic diagram of the enclosure. rj = (0 = 3 = 0 for all .Y. I‘. (16) 

(11) 

and from equations (IO) and (1 I) follows the relation 
between $ and Q by a Poisson equation 

A$ = -c’J. (12) 

In terms of $ and (o the momentum equations (3) and 
(4) yield 

A9 
= 8 

ij, 
sin 0 (13) 

and the energy equation (5) may be written as 

The boundary conditions become 

for .Y = 0, 1 and J’ = 0, I (15) 

where n is the direction normal to the wall. The bound- 
ary condition for cu will be discussed later. The initial 
conditions are 



A numerical study on natural convection in an inclined square enclosure 921 

SOLUTION PROCEDURE RESULTS AND DISCUSSION 

The two-dimensional alternating-direction-implicit 

(ADI) method is used (compare Brian [lo] and Borth- 

wick [ 1 I]) for the solution of the vorticity and energy 
equation. The streamfunction equation is solved by 
the successive-over-relaxation (SOR) procedure. 

The first and second derivatives in space are 
approximated by central differences. Each time-step 
is divided into two halves. For the first half time- 

step t,, to t,,, ,, : derivatives with respect to one space 
direction are represented by finite-difference ana- 
logues evaluated at r,,+ ,.z whereas those with respect 
to the other direction arc evaluated at t, and are 
already known. In the next half time-step from t,,+ , z 

to t,,+ I the reverse procedure is used. Backward 
differences are used for approximating the time 
derivatives. 

The parameters for the numerical treatment are 

chosen in such a way that a comparison with the 
experimental results of Lee and Kulacki is possible. 
The Prdndtl number is 7 and the Rayleigh numbers 
are 104, 5 x 104, 10’ and 1.5 x 10’. For each Rayleigh 
number the inclined angles are selected as 0, 15, 30 
and 45 deg. 

The boundary condition for the vorticity is cal- 

culated by a three-point forward or backward scheme 
for the streamfunction (see Roache [12]). This 
relation yields 

Twelve sets of isotherms and flow patterns are 

shown in Figs. 2 and 3. The position of the maximum 
temperature is higher than for pure conduction and 
the influence of natural convection can be observed 
for all Rayleigh numbers. Them is a strong pair of 
counter-rotating rolls for the inclined enclosure as can 

be seen from Fig. 3. The hot interior fluid moves 
upward in the middle along the line nearly parallel to 
the direction of gravity, then turns to the direction of 
the upper edge and divides the whole cross-section 
into two halves. The flow divides at the top and moves 

downward separately along the cold side walls. 

+ :w,,, = timi ,/(An)’ (17) 

where An is the mesh size and where the sign depends 
on the fact if n is the negative or positive I- or y- 
direction. 

Moreover, a second numerical scheme was used in 
order to compare the results. Here we used a staggered 
grid procedure in primitive variables with a hybrid 

differencing scheme and a fully implicit scheme for 
evaluating the time-derivatives as described by Patan- 
kar [ 131 and Markatos and Pericleous [ 141. 

In Table 2(a) the values of maximum temperature 

are given as they were observed by Lee and Kulacki. 

In Table 2(c) the computed values as evaluated with 
the AD1 method and in Table 2(b) the values as com- 
puted using the hybrid method with primitive vari- 
ables are given. The peak fluid temperature becomes 
lower at higher Rayleigh numbers because of the 
stronger convective motion, and the peak temperature 

is essentially independent of the inclined angle. if 
02 15deg. 

GRID DEPENDENCY 

The positions of the maximum temperature for 

II = 30 and 45 deg are given in Table 3. The position 
moves continuously toward the upper top case as the 
Rayleigh number increases and reaches .I-;L = 0.875 
and y/L = 0.875 at Ra = I .5 x 10’. 

As described later it was not possible to receive a 
stable steady solution for 0 = 0 deg and for a Rayleigh 
number of 5 x lo4 or greater (the Prandtl number was 
7 throughout). Several grid sizes and time steps are 
used in order to examine the grid dependency. The 
results for the case Ra = 105, 0 = 0 and 15 deg are 

given in Table I. Three grids are considered here. The 
time of oscillation r,,,,,,, the maximum and minimum 
temperatures at .X = y = l/2 for the case 0 = 0 deg 
and the maximum temperature in the field for the case 
0 = I5 deg are given. Because of the minor differences 
for the 41 x 41 and 61 x 61 grids and because of the 
consumption of computer time the 41 x 41 grid is used 
for further calculations. 

All these observations and the description of heat 

transfer given later are in excellent agreement with 
experimental results for an inclined angle 0 3 15 deg. 

For the horizontal case it is first assumed that the 

enclosure would be divided by a symmetry line in the 
middle and only half of the enclosure is calculated (0 
deg sym in Table 2). The corresponding streamline 
patterns and isotherms are shown in Fig. 4. Obviously 
there exist two pairs of counter-rotating rolls for the 

horizontal enclosure and for Ra 2 5 x 10J, as indi- 
cated in the paper of Lee and Kulacki. but the values 
of maximum temperature are too low for the case 
Ra 2 5 x 10“. The discussion for this case will be con- 
tinued in the next section. 

Table 1. Grid dependency for uustcady and steady solution : 
Ra = 10’ 

HEAT TRANSFER 

0 = 0 deg 

&nAn*x 0 = !5 deg 

NJ’ x NY r,,,,,,, (s = 0.5, J’ = 0.5) Y,,,, 

21 x21 0.318 0.17CO.192 0.259 
41 x41 0.363 0.181LO.202 0.264 
61 x61 0.376 0.183hO.204 0.265 

The local and average Nusselt numbers arc defined 
in the same way as in the paper of Lee and Kulacki 

by 



Ra==l.O~ 104 5.0 I 10’ 1.0 IlO5 1.5,10” 

Rc;. 7. Numerical isotherms. 

H.-O. MA) 

Rb-1.0~104 5.0.10’ 1.0.10s 1.5 I305 

FIG. 3. Flow patterns. 
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Table 2. Comparison of numerical and experimental maximum 
temperatures 

~~__ __~ 

(a) experimental 

Ra 0 15 30 45 

I x IO4 0.387 0.388 0.389 0.389 
5 x lo4 0.293 0.294 0.293 0.293 
I x IO‘ 0.253 0.258 0.257 0.257 
1.5 x 10’ 0.236 0.238 0.233 0.234 

-- 
(b) hybrid 

RU 0 sym 

1 x IO4 0.386 
5x IO4 0.272 
I x 10” 0.237 
1.5 x IO’ 0.220 

(c) ADI 
____ 

15 30 45 

0.387 0.390 0.391 
0.299 0.298 0.296 
0.266 0.264 0.263 
0.247 0.245 0.243 

@ (dcg) 
Ra 0 sym 0 15 30 45 

1 X lo4 0.382 0.382 0.387 0.390 0.392 
5x IO4 0.270 0.2760.293 0.298 0.297 0.297 
I x 10’ 0.235 0.24lH.256 0.264 0.262 0.261 
1.5 x IO’ 0.217 0.222-0.239 0.244 0.243 0.242 

Table 3. Location of maximum 
temperature 

Ra 
0 = 30,45 deg 

x , y 

1 x IO4 0.750, 0.750 
5x lo4 0.825, 0.825 
1X105 0.850,0.850 
1.5x 10’ 0.875, 0.875 

s 1 

NM = Nu dn 
0 

where n denotes the x- or y-direction. We distinguish 
between left (index L), right (index R), bottom (index 

B), and top (index T) wall, respectively. In Fig. 5 
several plots of the local Nusselt number distribution 
along each wall are given for the case Ra = lo’, B = 15 
deg and are compared with the conduction-only 

mode. 
The influence of natural convection is investigated 

by a comparison of the local heat transfer rate with 
convection and conduction. For that, a modified local 

Nusselt number Nu+ as 

sin (2n + 1)rcx tanh (2n + 1) g 
I 

(20) 

is defined by Lee and Kulacki. Several Nu+ dis- 

Ra=l.o~ 105 RzL=1.5~106 

FIG. 4. Flow patterns and isotherms for horizontal enclosure ; 
symmetrical solution. 

tributions are given for Ra = 1.5 x IO’ in Figs. 6 and 
7. In Fig. 8 the variation of NUT at B = 45 deg with 
Rayleigh number is shown. 

Finally the variation of Nu with inclined angle and 
Rayleigh number is given in Fig. 9 (Nu = 1 cor- 
responds to the two-dimensional conduction-only 
mode). Because of the reasons discussed before, only 
the cases 0 > 15 deg are given. All the observations 
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FIG. 5. Nussclt number distribution on each wall; Rrr = IO‘. 
O= 15deg 

3.01 Ra=1.5.105 

1 N4 Nut, 
2.5 cl 0 = 150 + .9=15” 

0 8 = 300 x 0 = 30” 
2.0 b 6 = 450 

: - 
Z1.S 

1.0 

0.5 

Q3 0.2 0.4 0.6 0.8 1 

-left wall x riqht wall- 

FIG. 6. iliu+ distribution on the top and bottom 
Rrr = 1.5 x IO‘. 

3.” &&=1.5.10” 

I 
2.5 Nu; NU; 

2.0 I cl 8=15” + 0 = 150 
0 I3 30” = x e = 300 
A 0 = 45” Q e = 45” 

1 
r+ 

% - 
z 1.5 

1.0 

0.5 

I 
0.2 0.4 0.6 0.8 1.0 

-bottom wall y top wall- 

FIG. 7. Nu’ distribution on the lefi and right 
Ro = 1.5 x 10’. 

Walk 
FIG. 9. Eff‘ect of inclined angle on Nu. 

that “as the Rayleigh number increases NM increases, 
with Nu > 1, on the top and right walls, and dccrcascs 
with NM < 1, on the bottom and left walls”, Fig. 9 of 
Lee and Kulacki indicates for 0 = 0 : 

Nu,(lS x 10’) ,< Nu,(5 x IO’) < Nu,(l x IO’) 

,< Nu,(l x IO’). (21) 

Probably the explanation for this non-monotone 

behaviour is the oscillating nature of the flow for the 
case 0 = 0 deg which results in an oscillation of Nu., 
as shown in Fig. 10 for the case Ra = 5 x IO4 and 10’. 

walls: 

In Fig. 10 the variation of Nu, I‘or 0 = 0 deg. 
RN = 5 x IO4 and IO’is shown and obviously the solu- 
tion is oscillating for these cases. The results of the 
maximum temperature for the simulation without 
symmetry assumption are given in Table 2(c). The 
maximum tempcraturc is oscillating between a lower 
and upper value and the measured value is between 
these numbers. For the cases Rn = 1.5 x IO’ and 0 = 
15. 30 deg only slight oscillations could be observed. and discussion made in the paper of Lee and Kulacki 

are also valid for the numerical simulation. But there 
seems to be one discrepancy in Fig. 9 of this paper 
being not consistent with the description which states 

0.2 0.4 0.6 0.8 I. d 
-battom wall Y top wall------- 

FIG. 8. Nu,’ distribution at 0 = 45 deg 

Rfl 

q Left wall 

+ Right wall 
0 Bottom wall 
A Top wall 

Unfortunately it was not possible to receive a satis- 

factory result for the oscillating case when using the 
hybrid scheme. The solution was unsteady too. but 
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FIG. 10. Nz+ as a function of time for Izcr = 5 x 10“ and 101, 

1.5 5 11 
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FIG. 11, ‘%, as a function of lime for Ra = 10’ and one period of oscillation. 
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FIG. I?. Flow patterns during one period of’osciliation 

even for very fine grids the result was strongly grid 
dependent and no limit could be observed. Probably 
this is a direct consequence of the excessive numerical 
damping due to the numerical viscosity being imposed 
by the upwind scheme (see Borthwick [l I]). 

Finally. Fig. 11 charts the variation of NW,. with 
time for the case 0 = 0 deg and Ra = 1 O5 for one cycle 
of oscillation. The corresponding streamline patterns 
are shown in Fig. 12. In the beginning at t = t, a pair 
of strong mounter-rotating rolls is situated near the 
upper-centre portion of the enclosure. Then the left 
upper roll joins with the right main roll and the right 

upper roll is destroyed (f, ti, r,). At f = t, two new 
upper rolls appear and enlarge, and from t = t7 the 
whole procedure repeats itself being reflected at the 
symmetry line until the starting point t, is reached 
again. 

CONCLUSION 

The two-dimensional natural convection in an 
inclined square enclosure containing internal heat 
sources has been investigated numerically. Two 
different schemes have been applied, the first one was 
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an ADI procedure using vorticity and streamfunction 3. 
and the second was a hybrid method using primitive 

variables. The temperature distribution and the heat 
transfer rates are compared with the experimental 

4, 

results of Lee and Goldstein, where interferograms 
were obtained using water of very low salinity for a 5. 
square enclosure of 38.1 mm x 38.1 mm. The Prandtl 
number assumed was 7 and the Rayleigh number 
varied from IO4 to 1.5 x 105. 6. 

All the observations described by Lee and Kulacki 

are valid for the numerical simulation too. The results 
arc in excellent agreement for an inclined angle of 7. 
0 3 15 deg. For 8 = 0 deg and Ru > 5 x lo4 a two- 
dimensional steady solution was only achieved when 8. 
assuming symmetry conditions in the middle of the 
enclosure. When simulating the whole enclosure with- 
out the symmetry assumption an oscillating solution 
was achieved for t) = 0 deg and Ra > 5 x 104, indi- 

9, 

cating that the sets of counter-rotating rolls are 
unstable. These rolls appear and disappear during one 

cycle of oscillation. 10. 

In this work only the two-dimensional flow was 
considered. For future work it will be interesting to 

examine the whole three-dimensional flow in an Il. 

inclined square enclosure containing heat sources. 

1. 

2. 
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ETUDE NUMERIQUE DE LA CONVECTION NATURELLE DANS UNE CAVITE 
CARREE INCLINEE CONTENANT DES SOURCES THERMIQUES INTERNES 

RBsum&Les equations bidimensionnelles de conservation sont resolues numtriquement pour la convection 
naturelle dans une boite carree inclinee, limit&e par quatre parois rigides a temperature constante et qui 
contient des sources thermiques internes uniformement distribies. On applique deux schemas numeriques 
differents ; le premier est la technique AD1 avec fonction de courant et vorticite et I’autre est une methode 
hybride utilisant les variables primaires. On considtre des angles d’inclinaison, d partir de l’horizontale de 
0, 15, 30 et 45 degres, des nombres de Rayleigh entre IO4 et 1,5x IO’ et un nombre de Prandtl Cgal a 7. 
Pour H = 0 et Ra > 5 x lo4 on obtient une solution oscillante. Les resultats numeriques sont compares en 

detail avec l’etude experimentale de Lee et Goldstein (J. Heat Transfer 110, 345-349 (1988)). 

NUMERISCHE UNTERSUCHUNG DER NATURLICHEN KONVEKTION IN EINEM 
ANGESTELLTEN QUADRATISCHEN BEHALTER MIT INNEREN 

WARMEQUELLEN 

Zusammenfassung-Fir die natiirliche Konvektion in einem angestellten quadratischen Behllter wurden 
die zweidimensionalen Erhaltungsgleichungen numerisch gelost. Der Behalter war durch vier starre Wande, 
die auf konstanter Temperatur gehalten wurden, begrenzt und enthielt raumlich und zeitlich konstante 
Warmequellen. Es wurden zwei verschiedene numerische Verfahren verwendet : Das erste war ein ADI- 
Verfahren, bei dem Stromfunktion und Wirbelstlrke benutzt wurden, das zweite war ein Hybridverfahren, 
wo Druck und Geschwindigkeiten verwendet wurden. Die Anstellwinkel von der Horizontalen waren 0, 
15, 30 und 45 Grad, und die Rayleigh-ZahIen variierten von IO4 bis I,5 x 105, die Prandtl-Zahl war immer 
7. Fur 0 = 0 und Ra > 5 x lo4 ergaben sich oszillierende Liisungen. Die numerischen Ergebnisse wurden 

im einzelnen mit einer experimentellen Untersuchung von Lee und Goldstein (1988) verglichen. 
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WiCJIEHHOE WCCJIEflOBAHWE ECTECTBEHHOR KOHBEKqkiH B HAKJIOHHOB 
IIOJIOCTM KBALIPATHOl-0 CE’IEHMII. COIlEPXALUEtr BHYTPEHHME MCTO’XHWKM 

‘TEl%iA 

.‘,"HOTaL,H~%CneHHO peWeHb1 AByXMepHbIC ypaBHeHHS3 COXpaHeHNX AJIll eCTeCTBeHHOii KOHBeKUBH B 

HaKJIOHHOiiITOnOCTH KBaApaTHO~OCe'SeHEl~.~OnOCTb OrpaHWlCHa YeTbIpbMBmeCTKWMBnnaCTUHaMA,HaMH,Ha 

KOTOpbIX 3aAaHa IIOCTORHHaR TehtnepaTypa, H COAepXCHT OAHOpOAHO pacnpeAeneHHbre BHyTpeHHHe 

WCTO’,HBKB 3HCprHH.MCIIOnb3OBUIWb ABC pa3nHYHbIe WCneHHbIeCXeMbl:HeSEBHbIii MeTOA IIepeMeHHbIX 

HanpasneHd,B KOT~~~M BBOAHTCII 3ansxpeHHocTb IZ &HKIWI -roKa,H cMeluaHHbIl MeToA,nocTpoeH- 

HbIii Ha OCHOBe IIepBWIHbIX llepeMCHHbIX.%%IeAyeMbIe yrnbl HaKJIOHa K rOpSi30HTWIH COCTaBAXAB o”, 
15”,30” B 45”, mcno Pmen A3Mewxnocb B Aeana3oHe OT lo4 no 1,5 x lo’, a wcno IIpaHATnn BO Bcex 

cnyraax paBHnnocb 7. np~ @=o" w Ra > 5 x lo4 nonyveH0 ocqannupyro~ee peuIeHHe. npOBeAeH0 

TIUaTenbHOe CpaBHeHlle ,TOny',CHHbIX YBCneHHbIX pe3ynbTaTOB C pe3ynbTaTaMH 3KCI,epE,MeHTZ,JIbHOrO 

uccneAosaHsnJh B ronAcTefiHa(J. Heat Transfer 110,345-349(1988)). 


