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Abstract—The two-dimensional conservation equations are solved numerically for natural convection in
an inclined square box bounded by four rigid plates of constant temperature containing uniformly dis-
tributed internal energy sources. Two different numerical schemes are applied. the first is an ADI technigue
where vorticity and strecamfunction are used, and the second is a hybrid method using primitive variables.
Inclination angles from the horizontal of 0, 15, 30 and 45 deg and Rayleigh numbers from 10% to 1.5x 10°
are studied, the Prandtl number is 7 throughout. For 0 = 0 deg and Ra > 5 x 10" an oscillating solution is
achieved. The numerical results are compared in detail with an experimental study of Lee and Goldstein
(J. Heat Transfer 110, 345-349 (1988)).

INTRODUCTION

THE NATURAL convection in a confined enclosure has
been examined extensively for the case when the flow
was driven by a temperature gradient between the
walls. Yang [1] and Ostrach [2] have presented surveys
about experimental and numerical studies with a
detailed list of references.

Thermal convection in a fluid with internal energy
sources is very important in the theory of thermal
ignition where heat sources within the fluid are driven
by an exothermal chemical reaction. Here the thermal
gradients originated by the chemical reaction can be
the driving force for the onset of natural convection
which markedly enhance the rate of heat transfer in
comparison to a purely conductive mechanism.
Numerical work on this problem has been presented
by Merzhanov and Shtessel [3] and Jones [4], who
studied a homogeneous zero-order reaction, whereas
a first-order exothermal chemical reaction is described
by Kopylov and Makhviladze [5]. Gray and Kostin
[6] considered an adiabatic square enclosure in which
a catalytic reaction occurs at the two side walls,

Emara and Kulacki [7] studied numerically the
thermal convection in an enclosure which is driven
by uniform heat sources. Their results are in good
agrecment with experimental data. Acharya and
Goldstein [8] presented a numerical investigation of
two-dimensional natural convection of air in an
exothermally heated inclined box containing uni-
formly distributed internal heat sources.

The purpose of this paper is the numerical study of
the flow in a confined enclosure being driven by
uniform heat sources within and the examination of
the temperature field and heat transfer to the walls.
Experiments which are described by Lee and
Goldstein [9] are simulated using two different

numerical schemes. The fluid used in these exper-
iments was distilled water with NaCl added in order to
raise the electrical conductivity. The thermophysical
properties of the fluid were very closc to those of pure
water. A 60 Hz a.c. was passed from one silver-plated
copper plate to the opposing one through the water
to provide a relatively uniform internal heat source.
The temperature distribution was measured using a
Mach—Zehnder interferometer. A schematic drawing
of the apparatus is shown in Fig. 1.

GOVERNING EQUATIONS

We start from the conservation equations of mass,
momentum and energy for a Newtonian fluid the
motion of which is laminar using the Boussinesq
approximation. Three-dimensional effects arc neglec-
ted here.

Using the dimensionless variables (see Fig. 1)
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NOMENCLATURE
g gravitational acceleration ~. v dimensionless coordinates.
H energy source per unit time and volume
k thermal conductivity Greek symbols
Nu  local Nusselt number, equation (18) 2 thermal diffusivity of fluid
Nu  average Nusselt number, equation (19) i thermal expansion coeflicient of fluid
Nu" modified Nusselt number, equation (20) (C] inclined angle, Fig. 1
n direction normal to the wall 3 dimensionless temperature
P dimensionless pressure ¥ kinematic viscosity of fluid
Pr Prandtl number 7 time
Ra Rayleigh number, equation (6) v streamfunction
T temperaturc W vorticity
T, temperaturc at the wall
t dimensionless time Subscripts
I,V velocity components in the X- and Y- B bottom wall
directions L left wall
u, v dimensionless velocity components R right wall
X. Y Cartesian coordinates T top wall.
(;E‘+u—(;‘l' +1=21 —Av = v(; +8R'('l-')cos® (4) u:(;w, ¢ = —(;w (10)
ct 0xX cy Pr cy 0x
ol . a1 AY = 8 (5) S° that the continuity equation (2) is identically
it ox | dy PP satisfied. The vorticity  is defined by

The dimensionless parameters characterizing the sys-
tem are the inclination angle 6, the Rayleigh number

R 9B (LY HI )
“= 2/ sk
and the Prandtl number
V
Pr=— (7)
2

which was chosen to be constant here.

The boundary conditions are

u=r=9=0 for x=0.1 and r=0.1 (8)
and the initial conditions become
u=r=39=0 at =0 9

Now we introduce the streamfunction y satisfying

F1G. I. Schematic diagram of the enclosure.
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and from equations (10) and (11) follows the relation

between iy and w by a Poisson equation
Ay = —. (12)

In terms of Y and w the momentum equations (3) and
(4) yield
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and the energy equation (5) may be written as
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The boundary conditions become
v=0. Y _0 s-0
cn
for x=0,1 and r=0,1 (15

where nis the direction normal to the wall. The bound-
ary condition for w will be discussed later. The initial
conditions are

Yy=w=9=0 forallx, y. (16)
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SOLUTION PROCEDURE

The two-dimensional alternating-direction-implicit
(ADI) method is used (compare Brian [10] and Borth-
wick [11]) for the solution of the vorticity and energy
equation. The streamfunction equation is solved by
the successive-over-relaxation (SOR) procedure.

The first and second derivatives in space are
approximated by central differences. Each time-step
is divided into two halves. For the first half time-
step f,to 1,, ,» derivatives with respect to one space
direction are represented by finite-difference ana-
logues evaluated at 1, ., whereas those with respect
to the other direction are evaluated at ¢, and are
already known. In the next half time-step from ¢, ,.,
to t,,, the reverse procedure is used. Backward
differences are used for approximating the time
derivatives.

The boundary condition for the vorticity is cal-
culated by a three-point forward or backward scheme
for the streamfunction (see Roache [12]). This
relation yields

i lem = wmi l/(An)2

where An is the mesh size and where the sign depends
on the fact if »n is the negative or positive x- or y-
direction.

Moreover, a second numerical scheme was used in
order to compare the results. Here we used a staggered
grid procedure in primitive variables with a hybrid
differencing scheme and a fully implicit scheme for
evaluating the time-derivatives as described by Patan-
kar [13] and Markatos and Pericleous [14].

(17)

GRID DEPENDENCY

As described later it was not possible to receive a
stable steady solution for 0 = 0 deg and for a Rayleigh
number of 5 x 10* or greater (the Prandtl number was
7 throughout). Several grid sizes and time steps are
used in order to examine the grid dependency. The
results for the case Ra = 10°, 0 =0 and 15 deg are
given in Table 1. Three grids are considered here. The
time of oscillation 7., the maximum and minimum
temperatures at x = y = 1/2 for the case 6 = 0 deg
and the maximum temperature in the field for the case
0 = 15 deg are given. Because of the minor differences
for the 41 x41 and 61 x 61 grids and because of the
consumption of computer time the 41 x 41 grid is used
for further calculations.

Table 1. Grid dependency for unsteady and steady solution ;

Ra = 10°
O = 0deg
lgm|n7‘9ma\x = 1,5 deg
NXxNY Toscin (x=05,y=05) Fmax
21 x 21 0.318 0.170-0.192 0.259
41 x 41 0.363 0.181-0.202 0.264
61 x61 0.376 0.183-0.204 0.265

RESULTS AND DISCUSSION

The parameters for the numerical treatment are
chosen in such a way that a comparison with the
experimental results of Lee and Kulacki is possible.
The Prandtl number is 7 and the Rayleigh numbers
are 104, 5x 10% 10° and 1.5x 10°. For cach Rayleigh
number the inclined angles are selected as 0, 15, 30
and 45 deg.

Twelve sets of isotherms and flow patterns are
shown in Figs. 2 and 3. The position of the maximum
temperature is higher than for pure conduction and
the influence of natural convection can be observed
for all Rayleigh numbers. There is a strong pair of
counter-rotating rolls for the inclined enclosure as can
be seen from Fig. 3. The hot interior fluid moves
upward in the middle along the line nearly parallel to
the direction of gravity, then turns to the direction of
the upper edge and divides the whole cross-section
into two halves. The flow divides at the top and moves
downward separately along the cold side walls.

In Table 2(a) the values of maximum temperature
are given as they were observed by Lee and Kulacki.
In Table 2(c) the computed values as evaluated with
the ADI method and in Table 2(b) the values as com-
puted using the hybrid method with primitive vari-
ables are given. The peak fluid temperature becomes
lower at higher Rayleigh numbers because of the
stronger convective motion, and the peak temperature
is essentially independent of the inclined angle, if
0 = 15 deg.

The positions of the maximum temperature for
) = 30 and 45 deg are given in Table 3. The position
moves continuously toward the upper top case as the
Rayleigh number increases and reaches x/L = 0.875
and y/L = 0.875 at Ra = 1.5x 10°,

All these observations and the description of heat
transfer given later are in excellent agreement with
experimental results for an inclined angle 0 = 15 deg.

For the horizontal case it is first assumed that the
enclosure would be divided by a symmetry line in the
middle and only half of the enclosure is calculated (0
deg sym in Table 2). The corresponding streamline
patterns and isotherms are shown in Fig. 4. Obviously
there exist two pairs of counter-rotating rolls for the
horizontal enclosure and for Ra = 5x10% as indi-
cated in the paper of Lee and Kulacki, but the values
of maximum temperature are too low for the case
Ra > 5x 10*. The discussion for this case will be con-
tinued in the next section.

HEAT TRANSFER

The local and average Nusselt numbers are defined
in the same way as in the paper of Lee and Kulacki
by
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Table 2. Comparison of numerical and experimental maximum
temperatures
(a) experimental
O (deg)
Ra 0 15 30 45
1 x 10* 0.387 0.388 0.389 0.389
5x 10‘? 0.293 0.294 0.293 0.293
1 %107 0.253 0.258 0.257 0.257
1.5x 10°  0.236 0.238 0.233 0.234
(b) hybrid
© (deg)
Ru 0 sym 15 30 45
1 x10* 0.386 0.387 0.390 0.391
5x10* 0.272 0.299 0.298 0.296
1x10° 0237 0.266 0.264 0.263
1.5x 10> 0.220 0.247 0.245 0.243
(c) ADI
© (deg)
Ra 0 sym 0 15 30 45
1x10* 0.382 0.382 0.387 0.390 0.392
5x10°  0.270 0.276-0.293 0.298 0.297 0.297
1 x 10° 0.235 0.241-0.256 0.264 0.262 0.261
1.5x10° 0217 0.222-0.239 0.244 0.243 0.242
Table 3. Location of maximum ===
temperature \\\\ ﬁ
|
© = 30,45 deg
Ra X, ¥
1x10* 0.750, 0.750
5x10* 0.825, 0.825
Ix10° 0.850, 0.850 =
1.5x 10° 0.875, 0.875
Ra=1.0.10* Ra=5.0-10*
) 1
Nu = J Nudn (19) @ :]
“ D

where 7 denotes the x- or y-direction. We distinguish
between left (index L), right (index R), bottom (index
B), and top (index T) wall, respectively. In Fig. 5
several plots of the local Nusselt number distribution
along each wall are given for the case Ra = 10°,6 = 15
deg and are compared with the conduction-only
mode.

The influence of natural convection is investigated
by a comparison of the local heat transfer rate with
convection and conduction. For that, a modified local
Nusselt number Nu™ as

16 2 1
Nut = "= N e - _
“ 42D .cond u/ [nz ,,g‘o (2n+ 1)2

sin (2n+ D)zx tanh (2n 4 1) g] (20)

is defined by Lee and Kulacki. Several Nu* dis-

Ne
=

Ra=15-10°

Ra=1.0-10°

Fi1G. 4. Flow patterns and isotherms for horizontal enclosure ;
symmetrical solution.

tributions are given for Ra = 1.5x 10% in Figs. 6 and
7. In Fig. 8 the variation of Nu;” at § = 45 deg with
Rayleigh number is shown.

Finally the variation of Nu with inclined angle and
Rayleigh number is given in Fig. 9 (Nu =1 cor-
responds to the two-dimensional conduction-only
mode). Because of the reasons discussed before, only
the cases 6 > 15 deg are given. All the observations
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Ra=10%,0 = 15°

i 0.2 0.4 0.6 0.8 1.0
X ory

F1G. 5. Nusselt number distribution on each wall; Re = 10°,
© = 15 deg.

O 0.2 04 08 08 1.0
~— left wall X right wall—

FiG. 6. Nu* distribution on the top and bottom walls.
Ra = 1.5x%10°.

U o7 o4 06 08 1.0
--bottom wall 'y  top wall—

Fig. 7. Nu' distribution on the left and right walls:

Ra = 1.5x10°,

and discussion made in the paper of Lee and Kulacki
are also valid for the numerical simulation. But there
seems to be one discrepancy in Fig. 9 of this paper
being not consistent with the description which states

2.00] g _ 450

1.75]
Ra

1.0-10*

u]
[u)
A
+

i 0.2 0.4 0.6 0.8 1.0
———Dbottom vall y

top wall————

F1G. 8. Nu/" distribution at @ = 45 deg.

Ra

= — 1.0-10¢
----- 5.0-10
=== 1.0-108
-—15.105

Left wall
Right wall
Bottom wall
Top wall

G+ 0

20 30 40
[4

FiG. 9. Effect of inclined angle on Nu.

that “"as the Rayleigh number increases Nu increases,
with Nu > 1, on the top and right walls, and decreascs
with Nu < 1, on the bottom and left walls”, Fig. 9 of
Lec and Kulacki indicates for 0 = 0:

Nur(1.5 % 10%) < Nu(5 % 10%) < Nur(1 x 10%)

< Nup(1x10%. (21)

Probably the cxplanation for this non-monotone
behaviour is the oscillating nature of the flow for the
case § = 0 deg which results in an oscillation of Nuy
as shown in Fig. 10 for the case Ra = 5x 10%and 10°.

In Fig. 10 the variation of Nuy for 0=0 deg,
Ra = 5x 10*and 10° is shown and obviously the solu-
tion is oscillating for these cases. The results of the
maximum temperature for the simulation without
symmetry assumption are given in Table 2(c). The
maximum temperaturc is oscillating between a fower
and upper value and the measured value is between
these numbers. For the cases Ra = 1.5%x 10 and 0 =
15, 30 deg only slight oscillations could be observed.

Unfortunately it was not possible to receive a satis-
factory result for the oscillating case when using the
hybrid scheme. The solution was unsteady too. but
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Ra=5-10*

1.51

1.3
0.23 0.50 0.75 1.00 1.5 .50 .75 2.00

Ra=10%

1.7]

¥ ¥ Y T Y T

6.2 0.4 0.6 0.8 1.g 1.2
t

FiG. 10. Nuy as a function of time for Ra = §x 10* and 10°,

1.2]

8.0 0.10  0.15 0.20 0.25 0.30 0.35  0.40
t

F1G. 11, Nuy as a function of time for Ra = 10° and one period of oscillation.
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FiG. 12. Flow patterns during one period of oscillation.

even for very fine grids the result was strongly grid
dependent and no limit could be observed. Probably
this is a direct consequence of the excessive numerical
damping due to the numerical viscosity being imposed
by the upwind scheme (see Borthwick [11]).

Finally, Fig. 11 charts the variation of Nuy with
time for the case # = 0 deg and Ra = 10° for one cycle
of oscillation. The corresponding streamline patterns
are shown in Fig. 12. In the beginning at 7 = 7, a pair
of strong counter-rotating rolls is situated near the
upper-centre portion of the enclosure. Then the left
upper roll joins with the right main roll and the right

upper roll is destroyed (75, #5, £,). At [ = 5 two new
upper rolls appear and enlarge, and from ¢ = ¢, the
whole procedure repeats itself being reflected at the
symmetry line until the starting point 7, is rcached
again.

CONCLUSION

The two-dimensional natural convection in an
inclined square enclosure containing internal heat
sources has been investigated numerically. Two
different schemes have been applied, the first one was
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an ADI procedure using vorticity and streamfunction
and the second was a hybrid method using primitive
variables. The temperature distribution and the heat
transfer rates are compared with the experimental
results of Lee and Goldstein, where interferograms
were obtained using water of very low salinity for a
square enclosure of 38.1 mm x 38.1 mm. The Prandtl
number assumed was 7 and the Rayleigh number
varied from 10% to 1.5 x 10°,

All the observations described by Lee and Kulacki
are valid for the numerical simulation too. The results
arc in excellent agreement for an inclined angle of
) > 15 deg. For § = 0 deg and Ra = 5x 10* a two-
dimensional steady solution was only achieved when
assuming symmetry conditions in the middle of the
enclosure. When simulating the whole enclosure with-
out the symmetry assumption an oscillating solution
was achieved for 6 = 0 deg and Ra > 5 x 10%, indi-
cating that the sets of counter-rotating rolls are
unstable. These rolls appear and disappear during one
cycle of oscillation.

In this work only the two-dimensional flow was
considered. For future work it will be interesting to
examine the whole three-dimensional flow in an
inclined square enclosure containing heat sources.
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ETUDE NUMERIQUE DE LA CONVECTION NATURELLE DANS UNE CAVITE
CARREE INCLINEE CONTENANT DES SOURCES THERMIQUES INTERNES

Résumé—Les équations bidimensionnelles de conservation sont résolues numériquement pour la convection
naturelle dans une boite carrée inclinée, limitée par quatre parois rigides & température constante et qui
contient des sources thermiques internes uniformément distribuées. On applique deux schémas numeériques
différents ; le premier est la technique ADI avec fonction de courant et vorticité et I'autre est une méthode
hybride utilisant les variables primaires. On considére des angles d’inclinaison, a partir de 'horizontale de
0, 15, 30 et 45 degrés, des nombres de Rayleigh entre 10* et 1,5x 10° et un nombre de Prandtl égal a 7.
Pour 6 = 0 et Ra > 5x 10* on obtient une solution oscillante. Les résultats numériques sont comparés en
détail avec I'étude expérimentale de Lee et Goldstein (J. Heat Transfer 110, 345-349 (1988)).

NUMERISCHE UNTERSUCHUNG DER NATURLIC_HEN KONVEKTION IN EINEM
ANGESTELLTEN QUADRATISCHEN BEHALTER MIT INNEREN
WARMEQUELLEN

Zusammenfassung—Fiir die natiirliche Konvektion in einem angestellten quadratischen Behilter wurden
die zweidimensionalen Erhaltungsgleichungen numerisch geldst. Der Behélter war durch vier starre Wiinde,
die auf konstanter Temperatur gehalten wurden, begrenzt und enthielt rdumlich und zeitlich konstante
Wirmequellen. Es wurden zwei verschiedene numerische Verfahren verwendet: Das erste war ein ADI-
Verfahren, bei dem Stromfunktion und Wirbelstirke benutzt wurden, das zweite war ein Hybridverfahren,
wo Druck und Geschwindigkeiten verwendet wurden. Die Anstellwinkel von der Horizontalen waren 0,
15, 30 und 45 Grad, und die Rayleigh-Zahlen variierten von 10* bis 1,5 x 10°, die Prandtl-Zahl war immer
7. Fiir 8 = 0 und Ra > 5x 10* ergaben sich oszillierende Lsungen. Die numerischen Ergebnisse wurden
im einzelnen mit einer experimentellen Untersuchung von Lee und Goldstein (1988) verglichen.
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YHUCJIEHHOE UCCJIEJOBAHUE ECTECTBEHHON KOHBEKLIMU B HAKJIOHHOM!
ITOJIOCTU KBAJIPATHOI'O CEYEHMS, COAEPXKAIMENR BHYTPEHHUE UCTOUYHUKH
TEIJIA

Andorauds—YUCIEHHO pelIeHbl (BYXMEPHBIE YPAaBHEHHS COXPAHEHHA I €CTECTBEHHOH KOHBEKUMH B
HAKJIOHHOH MMOJIOCTH KBanpaTHOTro ceveHHs. [1010CTh OrpaHU4eHa YeTHIPbMSI XKECTKHMH IIaCTHHAMM, Ha
KOTOPBLIX 3afaHa TOCTOSHHAs TEMIEPAaTypa, U CONCPXHT OJHOPOAHO PACHpENC/ICHHbiC BHYTPEHHHE
UCTOMHUKY 3Hepruu. Micnonp30Banuch B pa3IM4HBIE YHCIIEHHbIE CXEMBI: HEABHBIN METOX MEPEMEHHBIX
HamnpasJieHHH, B KOTOPOM BBOIATCH 32BHXPEHHOCTb ¥ (PYHKIMS TOKA, M CMEIHAHHBIA METO/I, IOCTPOEH-
HbIA Ha OCHOBE NMEPBHYHBIX nepeMeHHbIX. McciiemyeMbie yribl HakiIoHa K rOpU3oOHTanu cocrasisiy 0°,
15°, 30° um 45°, ancno Pases usmensanocs B auanasone ot 10* g0 1,5 x 10°, a wucno IMpanarns so Beex
cnyuasx pasHsnocs 7. Ipu 6 =0° u Ra > 5 x 10* nonyueno ocumudpyomee petieHse. IlpopeneHo
TINATEILHOE CPaBHEHHUE [OJIyYCHHBIX YHCHEHHBIX PE3YJLTATOB C Pe3yJbTaTaM# IKCHEPHMEHTAILHOIO
uccnenosanus JIn u Tonacreitna (J. Heat Transfer 110, 345-349 (1988)).



